III. Example 2: R-C DC Circuit

Questions:

Physical characteristics of the circuit: 60 volt DC battery connected in series with a 0.05 farad capacitor and a 5 ohm resistor. There is no charge on the capacitor and current flows when the open switch is closed. (Note: This is Exercise #27 on p. 521 and p. 528 of Stewart: Calculus—Concepts and Contexts, 2nd ed.)

Task: Write down the Initial Value Problem associated with this circuit and solve it for the charge in order to answer the following questions.

- [a] Describe in words how the charge changes over time.
- [b] What is the charge 0.5 second after the switch is closed?
- [c] At what time does the charge equal 90% of the steady-state charge?
- [d] What is the average charge over the first five time units for this circuit?

Solution: By Kirchhoff's laws we have $E_R + E_C = EMF$ which, with $E_R = R \cdot Q'(t)$ and $E_C = Q(t)/C$, translates into the following Initial Value Problem (for $t \ge 0$):

$$5Q'(t) + \frac{Q(t)}{0.05} = 60,$$
 $Q(t) = 0$ at $t = 0$

We can solve for Q using the method of separation of variables.

Outline of solution by separation of variables

First, we will divide the ODE through by 5, replace Q(t) by Q, and use the differential notation for derivatives:

$$\frac{dQ}{dt} + 4Q = 12$$

Next, use algebra to rewrite this as

$$\frac{dQ}{12 - 4Q} = dt$$

and integrate both sides to obtain

$$-\frac{1}{4}\ln|12 - 4Q| = t + C$$

which with the initial condition Q(0) = 0 yields the circuit charge

$$Q(t) = 3 - 3e^{-4t}, \quad t \ge 0$$

More details for all these steps may be found below, after the Answers.

Answers:

[a] Describe in words how the charge changes over time.

The following graph shows how Q(t) increases from 0 at t=0 toward an asymptotic limit 3 as t increases:

$$\lim_{t \to \infty} Q(t) = 3 - 3 \lim_{t \to \infty} e^{-4t} = 3 - 3(0) = 3$$

This asymptotic limit is called the *steady-state* charge.

[b] What is the charge 0.5 second after the switch is closed?

$$Q(0.5) = 3 - 3e^{-4(0.5)} = 3 - 3e^{-2} \approx 2.59$$

which looks correct according to the following graph of Q(t).

[c] At what time does the charge equal 90% of the steady-state charge?

Solve

$$Q(t) = 0.90(3)$$

or

$$3 - 3e^{-4 \cdot t} = 2.7$$

to get

$$t = -\frac{1}{4}\ln(0.1) \approx 0.576$$

This answer could have been approximated by graphing Q(t) on your calculator and zooming or tracing the curve. The preceding graph of Q(t) provides a visual check of the answer.

[d] What is the average charge over the first five time units for this circuit?

By definition, the time unit for this R-C DC circuit is

$$\tau = C \cdot R = 0.05 \cdot 5 = 0.25$$

By definition of the average value of a function (see, e.g., p. 473 of Stewart), the average charge over first five time units is

$$Q_{avg} = \frac{1}{1.25} \int_0^{1.25} (3 - 3e^{-4t}) dt = \frac{3}{5} (4 + e^{-5}) \approx 2.40 \text{ coulombs}$$

Details of solution by separation of variables

After multiplying both sides of the ODE

$$\frac{dQ}{dt} = 12 - 4Q$$

by dt, we get the ODE in differential form

$$dQ = (12 - 4Q) dt$$

Divide both sides by 12-4Q in order to separate variables: put anything involving Q on one side and anything involving t on the other side:

$$\frac{dQ}{12 - 4Q} = dt \tag{1}$$

Now we are allowed to integrate each side separately and still have equality. The right side of equation (1) is easy:

$$\int dt = t + C$$

where C is an arbitrary constant. The left side of equation (1) looks related to the integral $\int \frac{1}{x} dx$. So we use the substitution

$$x = 12 - 4Q$$
 to get
$$\frac{dx}{dQ} = -4$$
 or
$$dQ = -\frac{1}{4}dx$$

Then in equation (1) we replace 12 - 4Q with x and dQ with $-\frac{1}{4}dx$ and integrate in order to get the left side to equal

$$\int \frac{1}{12 - 4Q} dQ = \int \frac{1}{x} \left(-\frac{1}{4} dx \right)$$

$$= -\frac{1}{4} \int \frac{1}{x} dx$$

$$= -\frac{1}{4} \ln|x| + C$$

$$= -\frac{1}{4} \ln|12 - 4Q| + C$$

Hence equation (1), after both sides are integrated, becomes (collecting all arbitrary constants on the right hand side as a single arbitrary constant)

$$-\frac{1}{4}\ln|12 - 4Q| = t + C \tag{2}$$

Since there is no charge when the switch is thrown, we let Q=0 when t=0 to solve for C

$$-\frac{1}{4}\ln|12 - 0| = 0 + C \Longrightarrow C = -\frac{1}{4}\ln 12$$

and so equation (2) becomes

$$-\frac{1}{4}\ln|12 - 4Q| = -\frac{1}{4}\ln|12 + t|$$

It is usually preferable to solve for the dependent variable, Q in this case. To do that, we first multiply both sides of the last equation by -4 to get

$$\ln|12 - 4Q| = \ln 12 - 4t$$

then take the exponential (inverse logarithm) of both sides

$$e^{\ln|12 - 4Q|} = e^{\ln 12 - 4t} \tag{3}$$

and then use a property of exponentials

$$e^{a+b} = e^a \times e^b$$

with $a = \ln 12$ and b = -4t to get from equation (3)

$$|12 - 4Q| = e^{\ln 12} \times e^{-4t}$$

= $12e^{-4t}$

since $e^{\ln 12} = 12$. Now $|x| = c \Longrightarrow x = \pm c$ so we have

$$12 - 4Q = \pm 12e^{-4t}$$

Since we know that Q = 0 at t = 0, we determine the sign to be +, allowing us to solve for Q by dividing both sides of the last equation by 4 and then isolating Q on one side

$$Q(t) = 3(1 - e^{-4t}), \quad t \ge 0$$